과학기술위성 1호 비행모델 발사를 위한 해석과 시험

Launch Environmental Test and Analysis for STSAT-1 Flight Model

탁경모^{*},이준호,장태성,차원호,이상현,이현우,임종태 (KAIST 인공위성연구센터)

1. 서 론

과학기술위성 1호는 KAIST 인공위성연구센 터에서 개발된 국내 최초의 우주과학 실험용 소 형 인공위성으로 지난 2003년 9월 27일에 러시 아에서 성공적으로 발사된 후 모든 임무를 정상 적으로 수행하고 있다.

과학기술위성 1호의 구조적 안정성을 향상시 키고 발사적합성을 검증하기 위하여 위성개발 과정에서 진동시험, 충격시험, 질량특성값 측정 과 같은 발사환경시험과 태양전지판 전개장치의 전개성능시험, 열진공시험이 수행되었다^{[2],[3]}.

발사 전에 비행모델의 발사환경시험을 통해서 비행모델의 발사체 제한조건 만족여부와 수치적 해석모델의 정확성이 검증되었다. 열진공시험은 궤도열해석 결과를 기준으로 하여 궤도상에서 다양한 임무수행 중에 겪게 될 진공 및 가혹한 온도환경 하에서 위성의 모든 시스템들이 정상 적으로 동작하는 것을 검증하기 위하여 실시되 었다. 본 논문은 과학기술위성 1호 비행모델의 발사를 위해 수행된 해석과 시험결과를 다룬다.

2. 구조해석과 시험

과학기술위성 1호(그림 1)의 구조해석은 발사 하중에 대한 위성체의 구조적인 안정성을 검증 하기 위한 응력해석과 위성체의 고유진동수와 진동모드형상을 계산하는 고유치해석으로 나뉜 다. 고유치해석에는 발사체로부터의 진동 및 충 격가진에 의한 위성시스템의 응답특성을 계산하 기 위한 진동응답해석이 포함된다. 그림 2는 비 행모델 발사를 위해서 수행된 구조해석 결과를

그림 1. 과학기술위성 1호 비행모델

(가) 진동모드형상(나) 응력분포그림 2. 구조해석

나타낸다. 고유치해석결과를 이용하여 위성의 발사적합성을 검증하고 해석결과와 진동시험결 과를 비교하여 수치적 해석모델의 정확성을 검 증하였다(표 2).

과학기술위성 1호는 러시아 COSMOS-3M 발 사체로 발사되었으며 발사 전에 발사체 업체에 서 제공된 시험기준에 따라 진동시험과 질량특 성값 측정이 이루어졌다. 표 1은 COSMOS-3M 발사체의 소형위성 진동시험에 적용되는 승인수

표 1. COSMOS-3M 진동시험 규격

진동시험	방향과 시간	주파수 범위(Hz)	인중수준
정현파	종·횡방향	5 ~ 20	0.5 g
		$20 \sim 40$	0.7 g
		40 ~ 63	1.0 g
		63 ~ 100	1.7 g
	Sweep rate	4 Octave/min	
랜덤파	종·횡방향	20 ~ 70	0.006 g ² /Hz
		70 ~ 1000	0.04 g ² /Hz
		1000 ~ 2000	0.01 g ² /Hz
	시험시간	80 sec./axis	

표 2. 고유진동수 비교

방향		고유진동수 (Hz)			
		시험결과	해석결과	제한조건	
힁방향	Х	45	47	> 10	
	Z	44.7	43.7	> 10	
종방향	Y	106.5	108.8	> 25	

준 시험규격을 나타내며 시험기준에 따라 정현
파 진동시험과 랜덤파 진동시험을 수행하였다.
진동시험 후에 발사체 제한조건과 시험결과를
비교하여 비행모델의 발사적합성을 검증하였다.
표 2는 진동시험을 통하여 측정된 과학기술
위성 1호 비행모델의 고유진동수를 발사체 제한
조건과 비교한 결과이다. 표 2에서 위성의 모든
방향에 대한 고유진동수는 발사체의 고유진동수
제한조건을 만족하며 발사체와의 연성하중해석
에 사용된 유한요소해석 결과와 ±5%이내에서
일치한다.

3. 질량특성값 측정

위성의 질량특성값 측정은 위성과 발사체와 의 접합 및 분리 성능과 궤도상에서 자세제어에 영향을 주는 위성의 무게 및 무게중심점과 관성 모멘트를 측정하기 위하여 실시되었다

측정기준점은 위성 최하단 바닥면의 중앙이 다. 본 측정에서는 위성전체 무게와 위성체의 3 축에 대한 무게중심점(CG_x, CG_y, CG_z), 관성모 멘트(I_{xx}, I_{yy}, I_{zz})를 측정하여 발사체 제한조건과

표 3. 질량특성값 비교

질량특성	측정결과		제한조건	
무게 (kg _f)	106.1		< 130	
ה ו בו ב	CG_x	1.88	위성중심에서 반경 10mm이내	
무게중심점 (mm)	CG_y	311		
(mm)	CG_z	8.24	(Y방향 제외)	
- 	I _{xx}	10.2334×10^{6}		
선정도렌드 (ka mm ²)	I_{yy}	5.4899×10^{6}	측정결과 통보	
(kg·mm)	Izz	10.9779×10^{6}		

표 4. 주요 궤도환경변수

고도 (km)	690
궤도형태	태양동기궤도
궤도 경사각 (°)	98
근지점의 편각 (°)	165
지구반사계수	0.3
태양복사에너지 (W/m ²)	1410
지구복사에너지 (W/m ²)	246

비교하였다. 표 3은 과학기술위성 1호 비행모델 의 질량특성값 측정결과와 발사체 제한조건을 비교한 것이며 위성의 무게와 X축과 Z축의 무 게중심점은 발사체의 제한조건을 만족한다.

4. 궤도 열해석과 열진공시험

4.1 궤도환경

과학기술위성 1호는 고도 690km, 태양동기궤 도에서 운용되고 있다. 이러한 저궤도 환경은 지구 그림자에 의한 주기적인 온도변화, 태양과 지구로부터의 자외선복사, 진공환경 등이며 위 성은 이러한 가혹한 궤도환경에서 정상적으로 임무를 수행해야 한다.

표 4는 과학기술위성 1호 궤도열해석에 사용 된 주요 궤도환경변수를 나타낸다. 여기서 지구 및 태양복사에너지는 궤도상에서 임무수행 중에 나타나는 최대값이다.

4.2 궤도 열해석

정상적인 위성운용 중에 위성시스템의 온도를 허용온도범위 내에서 조절하고 구조적인 열변형 을 최소화하기 위하여 열제어 시스템이 필 요하며 위성개발과정에서 정확한 열설계 요구조 건을 도출하고 반영하여 열제어 시스템을 설계 하였다. 열제어 시스템의 성능을 검증하고 다양 한 임무수행 중에 발생하게 될 온도변화를 예측 하기 위하여 열평형시험으로 검증된 수치적 해 석모델을 이용하여 유한요소 궤도열해석이 수행 되었다. 그림 3은 과학위성 1호의 유한요소 열 해석모델을 나타내며 열해석모델은 모두 11,094 개의 요소와 10,323개의 절점으로 구성되 었다.

그림 3에서 위성 외부로부터의 열은 주로 태 양을 바라보는 +Z방향 태양전지판으로 유입되 며 위성 내부에서는 전력시스템에서 열이 많이 발생한다. 위성의 최하단인 전력시스템 바닥은 방열판 역할을 하도록 설계되었고 위성 내부의 열은 +/-X 방향으로 방출되도록 설계되었다. 위 성 내부의 열을 효과적으로 방출하기 위하여 위

그림 3. 유한요소 열해석 모델

그림 4. 축전지의 과도상태 온도변화

성 외부는 열방사율이 높게 되어있다. 그림 4는 축전지의 과도상태 궤도열해석 결과이며 약 2 2℃에서 온도가 유지되어 축전지의 설계요구조 건을 만족한다.

4.3 열진공시험 요구조건

열진공시험은 궤도상에서 다양한 임무수행 중 에 겪게 될 진공과 온도변화 환경에서 위성의 모든 시스템들이 정상적으로 동작하는지 검중하 기 위하여 실시되었다.

시험수준은 실제 궤도상에서 정의된 모든 동 작 시나리오에 따라 계산된 온도에 수치적 해석 모델의 불확실성이 고려된 온도 여유값을 가감 하여 설정하였다^{[2],[5]}. 표 5는 열진공시험 조건을 나타낸다.

4.4 열진공시험 절차와 결과

열진공시험은 시험요구조건에 따라 세 차례의 열주기 시험(Thermal cycling test)으로 수행되 었다. 본 시험에서는 상온·상압과 상온·진공 환경에서 전기적인 기능시험을 수행한 후에 모 두 세 번의 고온 및 저온 담금상태(Cold and hot soak)에서 기능시험이 수행되었다(그림 5). 열주기시험이 수행되는 동안 진공도는 시험 요 구수준을 만족하는 5×10⁻⁶ Torr 이하로 유지되 었다(그림 6). 위성의 모든 시스템을 정해진 온 도조건에서 시험하기 위하여 위성장착기 외부의 복사 열전달량을 조절하여 위성 외부에 있는 시 스템의 온도 상승을 최소화 하였다(그림 7).

세 주기의 열진공 시험에서 측정된 위성 내· 외부의 온도변화는 그림 5와 같다. 위성 시스템 의 온도는 고온과 저온 담금상태에서 각각 여섯 시간동안 유지되었다. 축전지와 주탑재체의 시 험온도는 각각 +35℃~-5℃, +46℃~+4℃

항목	요구조건
시험주기 수	3 주기
온도변화율	0.5 ~3 ℃/분
시험기 압력	1×10 ⁻⁵ Torr 이하
고온 및 저온 담금 유지시간	6시간 이상

표 5. 열진공 시험조건

그림 6. 진공도 변화

그림 7. 열진공시험

에서 유지되어 시험온도 요구조건을 만족하였으 며 대부분의 시험온도가 +50℃~-10℃이내에서 조절되어 시험온도 요구조건을 만족하였다.

5. 결 론

본 논문에서는 과학위성 1호 비행모델 개발 중에 수행한 시험 및 해석결과가 제시되었다. 시험을 통해 측정된 위성의 고유진동수와 질량 특성값은 발사체의 요구조건을 모두 만족한다.

열진공시험은 정해진 절차와 조건에 따라 수 행되었다. 시험수준은 다양한 임무환경에 따른 궤도열해석을 통하여 정해졌으며 과학위성 1호 의 모든 시스템은 요구된 진공 및 온도환경 하 에서 시험되어 우주환경에서의 정상동작이 검증 되었다.

참고문헌

1) 탁경모, "과학위성 1호 비행모델에 대한 구조 해석", 2002, 한국항공우주학회 추계학술발표회, pp.489~492.

2) 탁경모 외, "과학위성 1호 비행모델의 열진공 시험",2003, 한국항공우주학회 춘계학술발표회 논문집, pp.678~681.

3) 탁경모 외, "과학위성 1호 인증모델에 대한 발사환경시험 결과", 2002, 한국항공우주학회지, 제 30권 제 6호, pp.124~129.

4) NASA Space Vehicle Design Criteria , "Spacecraft Thermal Control", 1973, NASA SP-8105, pp.3~13.

5) MIL-STD-1540C, "Test requirements for launch, upper-stage, and space vehicles", 1994, $pp.72 \sim 83$.

6) D.G.Gilmore, "Satellite thermal control handbook", Aerospace corporation press, 1994, $pp.9-3 \sim 9-35$.