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Learning outcomes

This tutorial aims to address the following four questions: How to use it, The theory of it, How it
is implemented, and How to modify it.

The reader will learn:

How to use it:

• A tutorial illustrating the implementation of the aero-acoustic library for a single sector of
an axi-symmetric turbomachine and adapting the results to obtain the aero-acoustic pressure
waves for the full annulus.

The theory of it:

• The theory behind Ffowcs-Williams and Hawkings (FWH) analogy.

• The theory behind Farassat 1A (F1A) Formulation.

How it is implemented:

• An external aero-acoustic library will be used as the starting point which already implements
the Farassat 1A formulation to compute the FWH analogy.

• SRFPimpleFoam solver will be used along with cyclic boundary conditions to simulate a single
sector of the axi-symmetric turbomachine.

How to modify it:

• Copying the single sector FWH surface results and adapting the cell centre vectors and surface
area vectors to obtain the results for the remaining sectors.
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• How to compile a library in OpenFOAM

• Fundamentals of Computational Methods for Fluid Dynamics

• How to customise a solver and do top-level application programming in OpenFOAM
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Tij LightHill stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
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Chapter 1

Introduction

Noise has increasingly become a topic of concern for several industrial applications. Noise in general
is undesirable and can adversely affect the quality of our life. Flow noise generated by fans, vehi-
cles, wind turbines, and propulsion systems are major contributors to this unwanted sound. Initial
interest in understanding the noise generated by flows, revolved around the jet engine development
during World War 2 to develop less noisy engines to avoid detection by the enemy. Today, noise
generated by most industrial equipment is of significance. One such interesting area of application is
in the electric vehicle development. As electric vehicles no longer have a internal combustion engine
the the largest source of sound is the fan used in the cooling pack and therefore understanding and
effectively reducing the sound produced by this low pressure axial fan is of great importance to
produce an overall noiseless vehicle.

The study of the noise generated by air flows interacting with surrounding bodies is termed as aero-
acoustics. Aero-acoustics in general is a computationally expensive field, as it involves very large
and fine meshes. This is a result of having to simulate the source of the sound and then propagate
the sound all the way down to the position of the far-field observer. While computational resources
and power is increasing at all times, it is still important to find alternatives to simulating the entire
region from the source of the sound to the far-field observer. The first understanding of how sound
waves are generated by a turbulent flow, was provided in 1952. Sir James Lighthill published [1] his
theory of aerodynamic sound and the subject of aeroacoustics was born. This theory, which is known
as Lighthill’s Acoustic Analogy, provides the basis for our understanding of sound generation by flow.

Lighthill’s analogy addresses sound generation by a region of high speed turbulent flow in a sta-
tionary fluid. Lighthill determines the equations that describe the generation of sound waves that
propagate to the acoustic far field, as distinct from defining the fluid motion in the turbulent flow.
Solution to these equations lead to the Curle’s theorem [2] and Ffowcs Williams and Hawking (FWH)
theorem [3]. The Curle and FWH are used to predict far-field noise experienced by the observer by
only solving for the source of the sound. This largely reduces the computationally expenses as this
removes the necessity of meshing and solving the far field regions as well. The use of these analo-
gies can be avoided by solving the entire flow field using Large Eddy Simulation (LES) or Direct
Numerical Simulation (DNS) simulations however as expected these are extremely expensive and
most often do not offer the benefit over using these analogies which are computationally significantly
cheaper.

This report explores the methodology to compute the acoustic pressure waves generated by sin-
gle sector of an axi-symmetric turbomachine using the FWH analogy and adapting the results to
obtain the aero-acoustic pressure waves for the full annulus. This is done to eliminate the full annulus
and therefore reduced computational effort significantly
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Chapter 2

Theory

This chapter introduces the concepts, equations and terminologies required to understand the Open-
FOAM implementation of the Ffowcs Williams and Hawkings (FWH) analogy using the Farassat 1A
formulation (F1A). The F1A Formulation yields the time varying pressure perturbations generated
by the turbulence created by a moving but rigid solid surface.

2.1 Introduction

Aero-acoustics is the study of noise generated by air flows. There are several sources of noise in
engineering systems such as rotor noise, boundary layer noise, fan noise and air frame noise. Sound
waves are essentially small perturbations in pressure that propagate through the fluid medium.

These sound waves are generated by turbulent eddies convected by the mean flow coming in contact
with a solid body, which generates a rapid pressure change on the surface of the solid body. These
rapid pressure changes propagate through the medium as sound waves. The frequencies of the fluc-
tuations which results from this interaction are determined by the eddy size (L) and its convection
velocity (Uc) and are calculated according to Eq. (2.1). The size of the eddies are usually in the
same order of magnitude as the smallest dimension of the mean flow. The sound waves generated
at this frequency will correspondingly have a wavelength (λ), calculated according to Eq. (2.2). In
Eq. (2.2) co is the speed at which the the sound waves propagate through the medium. For a sound
wave propagating through air, co is considered to be 343ms−1.

f =
Uc

L
(2.1)

λ =
Lco
Uc

(2.2)

The pressure at any point in the flow is a function of both the position and time and is given
as the sum of the ambient pressure (po) and a time varying perturbation (p

′
(t)). The time varying

pressure perturbation is calculated according to Eq. (2.3). The human ear’s sensitivity is logarith-
mic and is measured using a decibel scale, referred to as the sound pressure level (SPL) and is
calculated according to Eq. (2.4), in terms of the root mean square of the fluctuating pressure time
history (prms) and a reference pressure (pref). For almost all airborne applications the standard
pref = 20µPa. Subsequently, prms is the time average of the square of the fluctuating pressure and
calculated according to Eq. (2.5)

p
′
(t) = p(t)− po (2.3)
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SPL = 20log10(
prms

pref
) (2.4)

prms =

√
1

2T

∫ T

−T

(p(t)− po)dt (2.5)

Aero-acoustic solvers aim to find this time varying pressure perturbation (p
′
(t)), to subsequently

calculate the SPL, frequency and amplitude of the acoustic waves experienced by the human ear.

2.2 Governing Equations

There are two main approaches in Computational Aero Acoustics (CAA).

1. Direct Approach: A transient solution is obtained by solving the compressible Navier-Stokes
equations directly using Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES)
to obtain the far field pressure perturbations experienced by an observer. There are large
differences in the scales between the flow variables and acoustic variables. Therefore the
meshes need to be very fine and extremely small time steps must be employed. This approach
is very computationally expensive. Additionally, the entire domain all the way till the far field
observer needs to be meshed and simulated.

2. Hybrid Approach: Hybrid methods assume one-way coupling between the flow and acous-
tics. That is, the flow is independent of the acoustics. This assumption is valid for most
low-mach and super-sonic applications but fails to be true in the hyper-sonic regime or regimes
of large density variations. This allows the problem to be divided into two sections, with one
being the flow solution and other, the propagation of sound waves. Therefore only the source
of sound needs to be simulated and different analogies can then be implemented to compute
the acoustic waves propagated to the far field.

2.2.1 Ffowcs Williams and Hawkings Analogy

The FWH equation is an exact rearrangement of the continuity equation and the Navier-Stokes equa-
tions into the form of an inhomogeneous wave equation with two surface source terms (monopole
and dipole) and a volume source term (quadrupole). The purpose of a FWH surface is to provide a
far field solution to the wave equation given an accurate numerical calculations on a surface which
bounds the source region. The most useful applications of the FWH analogy is in the calculation of
the acoustic far field from detailed numerical simulations of a flow within a limited region containing
the source region. Recent advances in computational methods have enabled the accurate calculation
of many time varying flows. But the computational domain is limited by the size of the computer,
and usually cannot be extended to the acoustic far field. It is assumed that the CFD calculations
accurately capture the pressure fluctuations, so that the FWH surface may be arbitrarily located
within the numerical domain. This is important because the numerical calculations at the edges of
the computational domain may be adversely influenced by numerical boundary conditions, so the
FWH surface is usually placed inside the numerical domain in a region where there is confidence in
the calculations.

The FWH analogy computes the far field acoustic pressure perturbation p′ at any point outside
the region of turbulence as function of time according to Eq. (2.6). Source term 1, term 2 and
term 3 on the right hand side of Eq. (2.6) refer to the quadrupole, dipole and monopole terms
respectively. The three source terms in the FWH equation each has its physical interpretation. The
thickness noise (monopole source) is determined completely by the geometry and kinematics of the
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body. The loading noise (dipole source) is generated by the force that acts on the fluid as a result of
the presence of the body. The quadrupole source term accounts for nonlinear effects (e.g., nonlinear
wave propagation; variations in the local sound speed; and noise generated by shocks, vorticity and
turbulence in the flow field) [4]. The three source terms are inter-dependent but the separation in
their physical meaning allows for some flexibility depending upon the physics of the problem. For
example, for a low speed flow the quadrupole source term can be neglected, similarly in the rotor
plane only the thickness term (monopole source) is dominant and the other two source terms may
be neglected. The main disadvantage of the traditional FWH approach is that to predict noise pro-
duced by a body operating in the transonic regime, the quadrupole source terms has to be included.
The quadrupole source term is a voulme source term and therfore a volume integration has to be
performed over the entire source region, which is very computationally expensive.

□2p
′
(x⃗, t) =

∂2

∂xi∂xj
TijH(f)− ∂

∂xi
[Pij n̂j + ρui(un − vn)δ(f)] +

∂

∂t
[ρovn + ρ(un − vn)δ(f)] (2.6)

Tij = ρuiuj + (p′ − c2oρ
′)δij − τij (2.7)

□2 =
1

c2
∂2

∂t2
−∇2 (2.8)

2.2.2 Farassat 1A Formulation

The Farassat 1A Formulation [3] [5] provides an integral representation of the FWH equation, which
does not take into consideration the quadrupole term (the volume source term) in Eq. (2.6). This
assumption is valid when the flow is not in the transonic regime.

In Figure 2.1 Ω is the volume containing the moving surface. ∂Ω is the bounding FWH surface. y⃗
is the position of the far-field observer. x⃗ the position of the source at the point of integration on
surface element. r⃗ is the distance between the observer and the source along the direction of radi-
ation and is calculated according to Eq. (2.9). n⃗ is the outward facing normal to the FWH surface
at the given point of integration. v⃗ is the velocity with which the solid body moves. Additionally
all terms placed in square brackets are evaluated at retarded time that is with respect to the source
Eq. (2.10), where τ is the source time and t is the observer time. M is the local Mach number vector
of the source. The subscripts n, r depict the components of the respective vectors in the FWH
surface normal direction and the radiation direction respectively. The summation of the pT and the
pL term yields the total pressure fluctuation terms as a function of time.

Implementing these equations in a CFD code involves the computing pT and the pL terms for each
mesh face constituting the FWH surface and summing them over to obtain the total contribution
of the FWH surface and then finally repeating the same procedure for all FWH surfaces.

r⃗ = x⃗− y⃗ (2.9)

τ = t− r/c (2.10)

p′(x⃗, t) = p′T (x⃗, t) + p′L(x⃗, t) (2.11)

Ui =

(
1− ρ

ρo

)
vi +

ρui

ρo
(2.12)

Li = Pij n⃗j + ρui(un + vn) (2.13)
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4πp′T (x⃗, t) =

∫
f=0

[
ρ0(U̇n + Uṅ)

r(1−Mr)2

]
ret

+

[
ρ0Un(rṀr + c0(Mr −M2))

r2(1−Mr)3

]
ret

dΩ (2.14)

4πcop
′
L(x⃗, t) =

∫
f=0

[
L̇r

r(1−Mr)2

]
ret

+ c0

[
Lr − LM

r2(1−Mr)2

]
ret

+

[
Lr(rṀr + co(Mr −M2)

r2(1−Mr)3

]
ret

dΩ

(2.15)

Figure 2.1: Turbulence and acoustic domain
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Chapter 3

Aero-acoustic OpenFOAM Library

This chapter aims to explain the implementation of the Farassat 1A formulation for the FWH anal-
ogy in OpenFOAM. The existing aero-acoustic [6] library will be described here.

The library is available in github libAcoustics. The user will first need to be have a github account
to download the files. The current library has three far-field prediction methods, namely the Curle,
FWH and CFD-BEM coupling analogy. The library is also available for several ESI and Extend
versions of OpenFOAM. All modules of the library have included in them a wmakeAll.sh file which
can simply be run in the terminal window using the \.wmakeAll.sh command once OpenFOAM is
sourced in the terminal. This document however deals only with the setup and modification of the
FWH analogy using the F1A formulation.

3.1 File Structure

This OpenFOAM library is a function object which aims at implementing the FWH analogy to
obtain the acoustic pressure fluctuations generated by FWH surfaces, i.e, surfaces that bound the
source of the sound. This is done by finding the contribution of each face centre constituting the
FWH surface to the thickness and loading term as described in Eq 2.14 and Eq 2.15 respectively.
Subsequently the contribution of all the FWH surfaces are summed up to find the acoustic pressure
experienced positioned in the acoustic far field.

There are several steps involved in obtaining the pressure fluctuation as a function of time for an
observer positioned in the acoustic far-field region and then subsequently obtain the SPL, frequency
and amplitude of the acoustic waves are obtained by using a fourier transform on the fluctuating
pressure data. These steps are broken down into 5 different .C files in the existing function object.

1. AcousticAnalogy.C : This file reads the case setup dictionaries and identifies the various
parameters required to setup the F1A formulation. It collects the following information from
the case files : observer positions, speed of propagation of sound, the definition of FWH surfaces
and far field density and fourier transform frequency. It also sets up the files and directories
in which the output results will be stored.

2. FfowcsWilliamsHawkings.C : Initialises all variable collected by AcousticAnalogy.C and ad-
ditionally defines functions to sample the surface pressure, surface density and surface velocity
for any sampled FWH surface.

3. fwhFormulation.C : This file sets up all the intermediate geometric variables required for the
calculation of F1A formulation. It mainly calculates the observer position with respect to each
face centre constituting the FWH surfaces defined in the case dictionary.

4. Farassat1AFormulation.C : This file calculates the pressure fluctuation by all the FWH
surfaces according to Eq. (2.14) and Eq. (2.15).
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3.1. File Structure Chapter 3. Aero-acoustic OpenFOAM Library

5. SoundObserver.C : This file performs the fourier transform according to Eq. to obtain the
SPL and frequency of the acoustic pressure waves from the pressure fluctuation as a function
of time

This library uses inheritance and friend classes extensively. A friend class can access private
and protected members of another class in which it is declared as friend. The process of a child or
sub-class taking on the functionality of a parent or super-class is referred to as inheritance. The
Unified Modelling Language (UML) diagram as shown in Figure 3.1 illustrates the class inheritance
and relationships to other classes in addition to the class attributes and methods. The attributes and
methods of each class are listed in the top and bottom box respectively for each class. Inheritance
between a sub-class and super-class is symbolised with a straight connected line with a closed hollow
arrowhead pointing towards the super-class. Similarly, a friend class is illustrated by a straight solid
arrow pointing towards the friend class. As illustrated in Figure 3.1, the FfowcsWilliamsHawkings
class inherits from the AcousticAnalogy class while Farassat1AFormulation class inherits from
the fwhFormulation class. Additionally, both fwhFormulation and Farassat1AFormulation are
friend classes of the FfowcsWilliamsHawkings class. All attributes and methods of a class have
different access levels depending on the access modifier or visibility. The different access levels are
public (+), private (-), protected (#). Some of the attributes and methods in each of the classes
has been listed in Figure 3.1 using different visibility options.

Figure 3.1: UML Diagram
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3.2. AcousticAnalogy.C Chapter 3. Aero-acoustic OpenFOAM Library

3.2 AcousticAnalogy.C

This file reads data required for the the computation of the F1A formulation from the case setup
dictionaries and creates folders and files required to save the output data. This file contains three
main functions: the makeFile, writeFft and read functions.

This file extracts the following data from the case setup directories:

1. Simulation start time (timeStart_)

2. Simulation end time (timeEnd_)

3. Speed of propagation of acoustic waves (c0_)

4. Far field density (rhoInf)

5. List of observers (observers_)

6. Reference dimension (dRef_)

7. Reference pressure (pRef_)

8. Boolean declaring whether or not to perform a fourier transform to calculate the SPL and
frequency data (writeFft)

The simulation start time and end time are declared in the controlDict dictionary. A separate
fwhControl dictionary is introduced in which writeFft, c0, dRef, rhoInf have to be declared.
A sub-dictionary called the observers dictionary declares the list of observer is included under
fwhControl dictionary. It also declares the position of the observers in the cartesian coordinate
system, the reference pressure (pRef_) required to calculate the SPL. dRef_ is used to normalise the
results when a 2D simulation is carried out. dRef should be set as the depth of the domain when
carrying out 2D simulations and to -1 for 3D simulations. observers_ is a list of observers declared
in the case setup dictionary.

Lines 18 - 65 creates two constructors and a destructor of the AcousticAnalogy class. It takes
three inputs, depending upon the inputs one of the two constructors is selected.

Acoustic Analogy Constructors and Destructors

 Foam::functionObjects::AcousticAnalogy::AcousticAnalogy

 (

 const word& name,

 const Time& runTime,

 const dictionary& dict

 )

 :

 forces

 (

 name,

 runTime,

 dict

 ),

 analogyOutPtr_(nullptr),

 timeStart_(-1.0),

 timeEnd_(-1.0),

 writeFft_(true),

 c0_(343.0),

 dRef_(-1.0),

 observers_(0)

 {

 }



 Foam::functionObjects::AcousticAnalogy::AcousticAnalogy

 (

 const word& name,

 const objectRegistry& obr,
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3.2. AcousticAnalogy.C Chapter 3. Aero-acoustic OpenFOAM Library

 const dictionary& dict

 )

 :

 forces

 (

 name,

 obr,

 dict

 ),

 analogyOutPtr_(nullptr),

 timeStart_(-1.0),

 timeEnd_(-1.0),

 writeFft_(true),

 c0_(343.0),

 dRef_(-1.0),

 observers_(0)

 {

 }



 Foam::functionObjects::AcousticAnalogy::~AcousticAnalogy()

 {}

The makeFile() function belonging to the AcousticAnalogy class is used to create the output
directory. A top-level folder called acoustic data is created at the same level as the system,
control and 0 directory. Within the acoustic data directory a file is created for every observer
listed in the observer sub-dictionary mentioned in the fwhControl dictionary, and named according
to the analogy used and the observer name. It then writes the headers for these files. The file
contains two columns, namely pFluct and Time.

Acoustic Analogy makeFile()|

 void Foam::functionObjects::AcousticAnalogy::makeFile()

 {

 if (Pstream::master())

 {

 if(analogyOutPtr_.valid())

 {

 return;

 }

 }



 fileName ResultsDir;



 if (Pstream::master() && Pstream::parRun())

 {

 ResultsDir = obr_.time().rootPath() + "/" + obr_.time().caseName().path() + "/acousticData";

 mkDir(ResultsDir);

 }

 else if (!Pstream::parRun())

 {

 ResultsDir = obr_.time().rootPath() + "/" + obr_.time().caseName() + "/acousticData";

 mkDir(ResultsDir);

 }

 else

 {

 }



 // File update

 if (Pstream::master() || !Pstream::parRun())

 {



 analogyOutPtr_.set

 (

 new OFstream

 (

 ResultsDir + "/" + (name() + "-time.dat")

 )
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 );



 analogyOutPtr_() << "Time" << " ";

 forAll(observers_, iObserver)

 {

 analogyOutPtr_() << observers_[iObserver].name() << "_pFluct ";

 }

 analogyOutPtr_() << endl;

 }

 }

The writeFft() function belonging to the AcousticAnalogy class is used to write the SPL, pres-
sure fluctuation and frequency of the acoustic waves experienced by the observers. Lines 114 - 126

defines the location of the results directory acoustic data which as mentioned previously lies in the
same level as the system, control and 0 directory. Lines 127 - 165 first calculate the simulation
time tau, at which the fourier transform needs to be calculated and then for each observer the fourier
transform is carried out which yields the SPL and frequency and is saved under their respective files.

Acoustic Analogy writeFft() function

 void Foam::functionObjects::AcousticAnalogy::writeFft()

 {

 fileName ResultsDir;



 if (Pstream::master() && Pstream::parRun())

 {

 ResultsDir = obr_.time().rootPath() + "/" + obr_.time().caseName().path() + "/acousticData";

 }

 else if (!Pstream::parRun())

 {

 ResultsDir = obr_.time().rootPath() + "/" + obr_.time().caseName() + "/acousticData";

 }



 if (Pstream::master() || !Pstream::parRun())

 {

 const fvMesh& mesh = refCast<const fvMesh>(obr_);



 scalar tau;

 if (mesh.time().startTime().value() > timeStart_)

 {

 tau = (mesh.time().value() - mesh.time().startTime().value());

 }

 else

 {

 tau = (mesh.time().value() - timeStart_);

 }



 forAll(observers_, iObserver)

 {

 SoundObserver& obs = observers_[iObserver];

 autoPtr<List<List<scalar> > > obsFftPtr (obs.fft(tau));



 List<List<scalar> >& obsFft = obsFftPtr();



 if (obsFft[0].size() > 0)

 {

 Log << "Executing fft for obs: " << obs.name() << endl;

 fileName fftFile = ResultsDir + "/fft-" + name() + "-" + obs.name() + ".dat";



 OFstream fftStream (fftFile);

 fftStream << "Freq p\' spl" << endl;



 forAll(obsFft[0], k)

 {

 fftStream << obsFft[0][k] << " " << obsFft[1][k] << " " << obsFft[2][k] << endl;

 }
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 fftStream.flush();

 }

 }

 }

 }

The read() function belonging to the AcousticAnalogy class is used to read all the inputs
provided in the case dictionary. The case dictionary needs to contain the timeStart_, timeEnd_
which refer to the simulation start time and end time. These are mentioned in the controlDict

dictionary. All of the above mentioned inputs are read by the read() function. Following which the
makeFile() function belonging to the AcousticAnalogy class is called upon to create the files and
dictionaries to store the output.

Acoustic Analogy read() function

 bool Foam::functionObjects::AcousticAnalogy::read(const dictionary& dict)

 {

 if (!forces::read(dict))

 {

 return false;

 }

 Info << "Reading analogy settings" << endl;



 dict.lookup("timeStart") >> timeStart_;



 dict.lookup("timeEnd") >> timeEnd_;



 dict.lookup("writeFft") >> writeFft_;



 dict.lookup("c0") >> c0_;



 dict.lookup("dRef") >> dRef_;



 dict.lookup("rhoInf") >> rhoRef_;



 //read observers

 {

 const dictionary& obsDict = dict.subDict("observers");

 wordList obsNames = obsDict.toc();

 forAll (obsNames, obsI)

 {

 word oname = obsNames[obsI];

 vector opos (vector::zero);

 obsDict.subDict(oname).lookup("position") >> opos;

 scalar pref = 2.0e-5;

 obsDict.subDict(oname).lookup("pRef") >> pref;

 label fftFreq = 1024;

 obsDict.subDict(oname).lookup("fftFreq") >> fftFreq;



 observers_.append

 (

 SoundObserver

 (

 oname,

 opos,

 pref,

 fftFreq

 )

 );

 }

 }



 this->makeFile();



 return true;
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3.3 FfowcsWilliamsHawkings.C

This file initialises all variable collected by AcousticAnalogy.C and additionally defines functions
to sample the surface pressure, surface density and surface velocity for any sampled FWH sur-
face. FfowcsWilliamsHawkings.C inherits from the AcousticAnalogy class and has as friend class
both fwhFormulation class and Farassat1AFormulation class. The main purpose of this file is
to define the functions for obtaining the pressure, velocity and density on the sampled surface.
Lines 135 - 162 initialise the variable vS which is used to store the velocity at the face centres
of the sampled FWH surfaces. It then checks if the formulation type declared in the case setup
dictionary is correct, if not it throws an error.

FfowcsWilliamsHawkings::initialize()

 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //



 void Foam::functionObjects::FfowcsWilliamsHawkings::initialize()

 {



 vS_.resize(controlSurfaces_.size());

 forAll(controlSurfaces_, iSurf)

 {

 vS_[iSurf].resize(controlSurfaces_[iSurf].Cf().size());

 vS_[iSurf] = vector::zero;

 }



 //Allocate pointer to FWH formulation

 if (formulationType_ == "Farassat1AFormulation")

 {

 fwhFormulationPtr_.set

 (

 new Farassat1AFormulation(*this)

 );

 }

 else

 {

 Info << "Wrong formulation type: " << formulationType_ << endl

 << "Please, select: " << endl

 << "1) Farassat1AFormulation " << endl;

 }



 }

The sub-classFfowcsWilliamsHawkings inherits from the AcousticAnalogy, the super-class and
therefore has access to all the objects from the AcousticAnalogy class. All the variables declared
in the dictionary in the case setup and read by the read() function in the AcousticAnalogy class
is made available to the FfowcsWilliamsHawkings class. These variables are then stored under
respective variable names as seen in lines 171-178. Additionally the list of FWH surfaces are
stored in controlSurfaces_.

FfowcsWilliamsHawkings::read()

 bool Foam::functionObjects::FfowcsWilliamsHawkings::read(const dictionary& dict)

 {

 if (!AcousticAnalogy::read(dict))

 {

 return false;

 }



 dict.lookup("formulationType") >> formulationType_;

 dict.lookup("Blades") >> Blades_;

 dict.lookup("Ufwh") >> Ufwh_;

 dict.lookup("U0") >> U0_;

 dict.lookup("pInf") >> pInf_;

 dict.lookup("interpolationScheme") >> interpolationScheme_;

 dict.lookup("cleanFreq") >> cleanFreq_;
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 const fvMesh& mesh = refCast<const fvMesh>(obr_);

 PtrList<sampledSurface> newList

 (

 dict.lookup("surfaces"),

 sampledSurface::iNew(mesh)

 );

Lines 285 - 322 create three function objects under the FfowcsWilliamsHawkings class which
compute the surface pressure, density, velocity for a given sampled surface. These function objects
will be used later to sample the aforementioned quantities on the FWH control surfaces.

FfowcsWilliamsHawkings::surfaceDensity/surfaceVelocity/surfacePressure



 Foam::tmp<Foam::scalarField> Foam::functionObjects::FfowcsWilliamsHawkings::surfaceDensity(const

sampledSurface& surface) const

 {

 tmp<Field<scalar> > rhoSampled

 (

 sampleOrInterpolate<scalar>(this->rho()(), surface)

 );



 return rhoSampled;

 }



 Foam::tmp<Foam::vectorField> Foam::functionObjects::FfowcsWilliamsHawkings::surfaceVelocity(const

sampledSurface& surface) const

 {

 const volVectorField& U = obr_.lookupObject<volVectorField>("U");



 tmp<Field<vector> > USampled;



 USampled = sampleOrInterpolate<vector>(U , surface);



 return USampled;

 }



 Foam::tmp<Foam::scalarField> Foam::functionObjects::FfowcsWilliamsHawkings::surfacePressure(const

sampledSurface& surface) const

 {

 tmp<Field<scalar> > pSampled;

 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);



 pSampled = sampleOrInterpolate<scalar>(p , surface);



 if (p.dimensions() != dimPressure)

 {

 pSampled.ref() *= rhoRef_;

 }



 //Info << pSampled() << endl;



 return pSampled;

 }
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3.4 fwhFormulation.C

This file computes the distance between each face centre of each of the FWH control surfaces to every
observer and then subsequently calculates the time required by a pressure fluctuation generated from
each of those face centres to reach the observer. The fwhFormulation constructor defined in between
lines 4 - 20, takes as input a reference to the FfocwsWilliamsHawkings class. As mentioned in
section 3.3, fwhFormulation class is a friend class to FfowcsWilliamsHawkings class and therefore
will have access to all private and protected member functions of the FfowcsWilliamsHawkings

class.

fwhFormulation

 #include "FfowcsWilliamsHawkings.H"

 #include "fwhFormulation.H"



 Foam::functionObjects::fwhFormulation::fwhFormulation(const FfowcsWilliamsHawkings& fwh)

 :

 fwh_(fwh),

 qds_(0),

 fds_(0),

 tobs_(0),

 robs_(0),

 magrobs_(0),

 ni_(0),

 nl_(0),

 rMax_(0),

 tauMax_(0),

 tauMin_(0)

 {

 this->initialize();

 }

Lines 23 - 47 resize all required variables to have a size equal to the number of observers times
the number of control surfaces times the number of faces per control surface. As an example, as-
sume there are two observers, three FWH control surfaces and the three FWH control surfaces have
100,200, and 300 faces respectively. In such a case all required variables will be sized to 2 * 3
*100/200/300 respectively.

Lines 23 - 36 resize the variables qds and fds to the aforementioned sizes. Similarly, lines 36 - 47

resize tobs to the aforementioned sizes. The object tobs refers to t in Eq 2.10 and stores the time
required by the acoustic pressure wave to travel from the face centre to the observer. tauMax and
rMax store the maximum time and maximum distance between the source nd the observer for every
FWH control surface. Both tauMax and rMax are initialised to a size equal to the number of ob-
servers in lines 48 - 49. Lines 55 - 94 initialise objects robs and magrobs, which respectively
store the r⃗ and the magnitude of r⃗ defined in Eq 2.9. These variables will later be used to calculate
the p′T and p′L terms respectively for all face centres constituting the FWH control surfaces.

fwhformulation::initialize()

 void Foam::functionObjects::fwhFormulation::initialize()

 {

 //allocate qds_, fds_ and vds_

 qds_.resize(fwh_.observers_.size());

 fds_.resize(fwh_.observers_.size());

 forAll(fwh_.observers_, iObs)

 {

 qds_[iObs].resize(fwh_.controlSurfaces_.size());

 fds_[iObs].resize(fwh_.controlSurfaces_.size());

 forAll(fwh_.controlSurfaces_, iSurf)

 {

 qds_[iObs][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 fds_[iObs][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 }
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 }



 //allocate tobs

 tobs_.resize(fwh_.observers_.size());

 forAll(fwh_.observers_, iObs)

 {

 tobs_[iObs].resize(fwh_.controlSurfaces_.size());

 forAll(fwh_.controlSurfaces_, iSurf)

 {

 tobs_[iObs][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 }

 }



 tauMax_.resize(fwh_.observers_.size(), 0.0);

 rMax_.resize(fwh_.observers_.size(), 0.0);



 //allocate robs

 robs_.resize(fwh_.observers_.size());

 magrobs_.resize(fwh_.observers_.size());

Line 55 of fwhFormulation class initiates a forAll loop which is executed for each observer. In
line 57 the value of rMax for each observer is initially set to zero. In line 58 a reference obs of the
SoundObserver class is created. Lines 59 - 60 resize robs and magrobs to the number of observer
times the number of FWH control surfaces.

Line 61 initiates a forAll loop which is executed for each control surface. Lines 63 - 64 re-
size robs and magrobs to the number of observer times the number of FWH control surfaces times
the number of face centres constituting the FWH control surface. Cf() returns the face centres for
each given FWH control surface and Cf().size() returns the number of face centres for a given
surface. Line 66 initiates a forAll loop which is executed for each control face centre on the current
FWH control surface.

Line 68 computes the distance between the current face centre of a FWH control surface and an
observer by taking the vector difference between the source position (Cf)and the observer position
(obs.position) according to Eq 2.9, and stores it in the object robs, which has three componets,
namely in the x, y and z direction. These components can be addressed using r[0], r[1] and r[2]

respectively. Subsequently, this value is assigned to a temporary vector r as seen in line 69.

U0 and c0 refer to the background velocity of at the observer if any and the speed of propaga-
tion of acoustic pressure waves, which in most cases is the speed of sound itself. Lines 70 - 94

compute the magnitude of the r⃗ calculated according to Eq 2.9

fwhformulation::initialize()

 forAll(fwh_.observers_, iObs)

 {

 rMax_[iObs] = 0.0;

 const SoundObserver& obs = fwh_.observers_[iObs];

 robs_[iObs].resize(fwh_.controlSurfaces_.size());

 magrobs_[iObs].resize(fwh_.controlSurfaces_.size());

 forAll(fwh_.controlSurfaces_, iSurf)

 {

 robs_[iObs][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 magrobs_[iObs][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 const vectorField& Cf = fwh_.controlSurfaces_[iSurf].Cf();

 forAll(Cf, i)

 {

 robs_[iObs][iSurf][i] = obs.position() - Cf[i];

 vector r = robs_[iObs][iSurf][i];

 scalar R_ = sqrt

 (

 sqr(r[0])

 +
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 ( 1 - sqr(mag(fwh_.U0_)/fwh_.c0_))

 *

 ( sqr(r[1]) + sqr(r[2]) )

 );



 magrobs_[iObs][iSurf][i] =

 (

 -(mag(fwh_.U0_)/fwh_.c0_) * r[0] + R_

 ) / (1 - sqr(mag(fwh_.U0_)/fwh_.c0_));





 if (magrobs_[iObs][iSurf][i] > rMax_[iObs])

 {

 rMax_[iObs] = magrobs_[iObs][iSurf][i];

 }

 }

 }

 reduce(rMax_[iObs], maxOp<scalar>());

 tauMax_[iObs] = rMax_[iObs] / fwh_.c0_;

 reduce(tauMax_[iObs], maxOp<scalar>());

 }

Lines 96 - 127 aim to calculate the direction of the normal of each face associated to a FWH
control surface. Line 97 declares an object Cs which is a list of vectors containing the size of
the control surfaces declared. As done previously lines 98 - 99 resize ni and nl to the number
of FWH control surfaces. Line Sf() returns the face area vector. Line 100 initiates a forAll

to iterate over the number of control surfaces. For each control surface two vector fields Sf and
Cf are declared in Lines 102 - 103 to store the face area vectors and the face centre vector. In
Lines 104-105 ni and nl are resized to the number of faces constituting that particular face.

Lines 107-108 introduce a scalar surfSize which is used to store the number of faces per control
surface and the reduce operation is used to sum across processors. magSf is used to store the mag-
nitude of the face area vectors, which is initialised to zero at line 111. In line 112 a forAll is
initialised to iterate over the number of face centres per control surface. On line line 114, magSf
is assigned the value of the magnitude of the face area vector assigned to that face. On line 115,
ni for each face is assigned the direction vector of the face area vector. This achieved by dividing
the face area vector by its magnitude. Lines 116 - 123 introduces an if condition, where if the
inner product between face centre direction vector and the face area direction vector is positive, nl
is assigned the value one and minus one if it is negative.

fwhformulation::initialize()

 //calculate normals

 List<vector> Cs(fwh_.controlSurfaces_.size());

 ni_.resize(fwh_.controlSurfaces_.size());

 nl_.resize(fwh_.controlSurfaces_.size());

 forAll(ni_, iSurf)

 {

 const vectorField& Sf = fwh_.controlSurfaces_[iSurf].Sf();

 const vectorField& Cf = fwh_.controlSurfaces_[iSurf].Cf();

 ni_[iSurf].resize(Cf.size());

 nl_[iSurf].resize(Cf.size());

 Cs[iSurf] = gSum(Cf);

 scalar surfSize = scalar(Cf.size());

 reduce (surfSize, sumOp<scalar>());

 Cs[iSurf] /= surfSize;



 scalar magSf = 0.0;

 forAll(ni_[iSurf], iFace)

 {

 magSf = mag(Sf[iFace]);

 ni_[iSurf].value(iFace) = Sf[iFace]/magSf;

 if ( ((Cf[iFace] - Cs[iSurf]) & ni_[iSurf].value(iFace)) > 0 )

 {

21



3.4. fwhFormulation.C Chapter 3. Aero-acoustic OpenFOAM Library

 nl_[iSurf][iFace] = 1.0;

 }

 else

 {

 nl_[iSurf][iFace] = -1.0;

 }

 ni_[iSurf].value(iFace) *= nl_[iSurf][iFace];

 }

 }

 }
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3.5 Farassat1AFormulation.C

Lines 34 - 37 define a constructor for Farassat1AFormulation.C which takes as input, a reference
object to the FfocwsWlliamsHawkings class. Lines 6-12 include the declaration of the variables that
are required in the calculation of the Farassat 1A formulation. All of them are initially set to zero.
Lines 46 - 48 call on the initialise function, which is in turn defined between lines 57 - 79.
The initialise function sets up the size of the three variables Lr,Mr, Un using the resize command.
Initially the member objects are set to have a size equal to the number of observers as seen in
lines 59 - 64. Every observer will have a certain contribution from each control surface (∂Ω in
Figure 2.1) and therefore an additional dimension is added to include the number of control surfaces.
The contribution of each control surface is calculated by summing up the contribution of every face
constituting that control surface. Therefore an additional dimension of the number of face centres
constituting each control surface is included for each member object. Cf() returns a surface field
vector containing face centres and Cf.size() returns the number of face centres.

Farassat 1A Formulation

 Foam::functionObjects::Farassat1AFormulation::Farassat1AFormulation

 (

 const FfowcsWilliamsHawkings& fwh

 )

 :

 fwhFormulation(fwh),

 Un_(0),

 Lr_(0),

 Mr_(0),



 intDotQdS_(0.0, fwh_.obr_.time().value()),

 intFdS_(0.0, fwh_.obr_.time().value())

 {

 this->initialize();

 }



 // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //



 Foam::functionObjects::Farassat1AFormulation::~Farassat1AFormulation()

 {}





 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

 void Foam::functionObjects::Farassat1AFormulation::initialize()

 {

 intFdS_.resize(fwh_.observers_.size());

 intDotQdS_.resize(fwh_.observers_.size());



 Lr_.resize(fwh_.observers_.size());

 Mr_.resize(fwh_.observers_.size());

 Un_.resize(fwh_.observers_.size());



 forAll(Lr_, iObs)

 {

 Lr_[iObs].resize(fwh_.controlSurfaces_.size());

 Mr_[iObs].resize(fwh_.controlSurfaces_.size());

 Un_[iObs].resize(fwh_.controlSurfaces_.size());



 forAll(Lr_[iObs], iSurf)

 {

 Lr_[iObs][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 Mr_[iObs][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 Un_[iObs][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 }

 }

 }

Line 81 defines a new member function belonging to the Farassat1AFormulation class which
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takes as input, the number of observers as iObs. Lines 86-109 define the initial value of all the terms
required in Eq. (2.14) and Eq. (2.15).

Farassat 1A Formulation

 Foam::scalar Foam::functionObjects::Farassat1AFormulation::observerAcousticPressure(label iObs)

 {

 scalar ct = fwh_.obr_.time().value();



 //Farassat 1A

 vector L (vector::zero);

 scalar lr (0.0);

 scalar lM (0.0);

 scalar dotlr (0.0);

 vector r (vector::zero);

 vector rh (vector::zero);

 vector n (vector::zero);

 scalar dS (0.0);

 scalar magr(0.0);

 vector M (vector::zero);

 scalar magM (0.0);

 scalar Mr (0.0);

 scalar dotMr (0.0);

 tensor Pf (tensor::zero);

 scalar OneByOneMr(0.0);

 scalar OneByOneMrSq(0.0);



 scalar fpart1 (0.0);

 scalar fpart2 (0.0);

 scalar fpart3 (0.0);

 vector U(vector::zero);

 scalar Un(0.0);

 scalar dotUn(0.0);

 vector dotn(vector::zero);

In line 120 Sf() is used to return the face area vectors for the sampled FWH control surface.
Line 121 - 123 samples the surface pressure, density and velocity for the sampled FWH control
surface. Subsequently for each of the sampled FWH control surface the, r⃗ is calculated for each face
constituting the control surface. r⃗ is the distance between the source face centre and the observer
position. The definition of robs is in fwhFormulation.C. M is the mach number at the face cen-
tre and is calculated using the velocity at the face centre vS and the speed of sound propagation
c0. Line 141 corresponds to Eq. (2.12), Line 143 corresponds to Eq. (2.13). Lines 145 - 150

corresponds to obtaining the inner products along both the control surface normal (n⃗) and along
direction of radiation (r⃗). Lines 154 - 156 obtain the Lr,Mr, Un at each face centre.

Farassat 1A Formulation

 forAll(fwh_.controlSurfaces_, iSurf)

 {

 const sampledSurface& surf = fwh_.controlSurfaces_[iSurf];

 if (surf.interpolate())

 {

 Info<< "WARNING: Interpolation for surface " << surf.name() << " is on, turn it off"

 << endl;

 }



 const vectorField& Sf = surf.Sf();

 vectorField uS (fwh_.surfaceVelocity(surf)());

 scalarField rhoS (fwh_.surfaceDensity(surf)());

 scalarField pS (fwh_.surfacePressure(surf)() - fwh_.pInf_);



 //Farassat 1A formulation

 forAll(Sf, iFace)

 {
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 //For observe No iObs

 {

 r = robs_[iObs][iSurf][iFace];

 magr = magrobs_[iObs][iSurf][iFace];

 rh = r / magr;

 dS = mag(Sf[iFace]);

 n = ni_[iSurf].value(iFace);



 M = fwh_.vS_[iSurf][iFace] / fwh_.c0_;

 Mr = M & rh;

 magM = mag(M);



 U = (1.0 - rhoS[iFace] / fwh_.rhoRef_) * fwh_.vS_[iSurf][iFace]

 + rhoS[iFace] * uS[iFace] / fwh_.rhoRef_;

 Pf = pS[iFace]*tensor::I + rhoS[iFace]*uS[iFace]*(uS[iFace] - fwh_.vS_[iSurf][iFace]);



 L = Pf & n;

 lM = L & M;

 lr = L & rh;

 Mr = M & rh;

 Un = U & n;



 OneByOneMr = 1.0 / (1.0 - Mr);

 OneByOneMrSq = OneByOneMr*OneByOneMr;



 Un_[iObs][iSurf].value(iFace) = Un;

 Lr_[iObs][iSurf].value(iFace) = lr;

 Mr_[iObs][iSurf].value(iFace) = Mr;

Lines 158-161 compute the time derivative of Lr,Mr, Un. The dot operator is defined in the
FfowcsWilliamsHawkings.C file. Line 163 first creates a column in which the observer time
tobs is added and then computes p′T according to Eq. (2.14) between lines 174 - 177. Simi-
larly lines 130 - 133 computes the three terms on the right hand side in Eq. (2.15). Finally the
contribution of all the faces constituting the face centres are summed in lines 195 - 213

Farassat 1A Formulation



 dotlr = Lr_[iObs][iSurf].dot(ct, iFace);

 dotMr = Mr_[iObs][iSurf].dot(ct, iFace);

 dotUn = Un_[iObs][iSurf].dot(ct, iFace);

 dotn = ni_[iSurf].dot(ct, iFace);



 qds_[iObs][iSurf][iFace].first().append(tobs_[iObs][iSurf][iFace]);

 qds_[iObs][iSurf][iFace].second().append

 (

 (

 fwh_.rhoRef_ * (dotUn + (U & dotn)) * OneByOneMrSq / magr

 +

 fwh_.rhoRef_ * Un * (magr * dotMr + fwh_.c0_ * (Mr - magM*magM)) *

 OneByOneMrSq * OneByOneMr / magr / magr

 )*dS

 );



 fpart1 = dotlr * (dS / magr / fwh_.c0_) * OneByOneMrSq;

 fpart2 = (lr - lM) * (dS / magr / magr) * OneByOneMrSq;

 fpart3 = lr * (dS / magr / magr / fwh_.c0_) * OneByOneMrSq * OneByOneMr *

 (magr * dotMr + fwh_.c0_ * Mr - fwh_.c0_ * magM * magM);



 fds_[iObs][iSurf][iFace].first().append(tobs_[iObs][iSurf][iFace]);

 fds_[iObs][iSurf][iFace].second().append

 (

 fpart1 + fpart2 + fpart3

 );



 }//observer
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 } //For Sf

 } // for controlSurfaces_



 scalar ct1 = ct+fwh_.obr_.time().deltaT().value()*1.0e-6;//slightly increase time to get inside of

time step



 scalar retv = 0.0;

 intDotQdS_.value(iObs) = 0.0;

 intFdS_.value(iObs) = 0.0;

 //calculate acoustic pressure, zero if source didn't reached observer

 forAll(fwh_.controlSurfaces_, iSurf)

 {

 forAll(qds_[iObs][iSurf], iFace)

 {

 retv = valueAt(qds_, iObs, iSurf, iFace, ct1);



 intDotQdS_.value(iObs) += retv;

 retv = valueAt(fds_, iObs, iSurf, iFace, ct1);

 intFdS_.value(iObs) += retv;

 }

 }



 reduce (intDotQdS_.value(iObs), sumOp<scalar>());

3.6 SoundObserver.C

This file contains the function for calculating the fourier transform. The details of how the fourier
transform is performed is not looked at in this report. Instead, we just look at the input and output.
It requires as input the fluctuating pressure component as a function of time. The fluctuating
pressure and time is obtained from the F1A formulation file and is used as input into the fft function
as p_ and tau. The first output from the fft function is Frequency in Hz, the second output is the
Pressure amplitude in Pa and the third output is the Sound Pressure Level (SPL) in dB.

SoundObserver

 Foam::autoPtr<Foam::List<Foam::List<Foam::scalar> > > Foam::SoundObserver::fft(scalar tau) const

 {



 List<List<scalar> > fft_res(3);

 forAll (fft_res, i)

 {

 fft_res[i].resize(0);

 }



 if ( (p_.size() > 0) && (p_.size() % fftFreq_ == 0) )

 {

 FoamFftwDriver fftw (p_, tau);



 autoPtr<Pair<List<scalar> > > pfft = fftw.simpleScalarForwardTransform();



 fft_res[0].resize(pfft().first().size());

 fft_res[1].resize(pfft().first().size());

 fft_res[2].resize(pfft().first().size());



 forAll (pfft().first(), k)

 {

 fft_res[0][k] = pfft().first()[k]; //Frequency, Hz

 fft_res[1][k] = pfft().second()[k]; //pressure amplitude, Pa

 if (fft_res[1][k] > SMALL)

 {

 fft_res[2][k] = 20*log10(fft_res[1][k] / pref_); //SPL, dB

 }

 else

 {

 fft_res[2][k] = 0.0;
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 }

 }

 }



 return autoPtr<List<List<scalar> > >

 (

 new List<List<scalar> >

 (

 fft_res

 )

 );

 }



 //

 //END-OF-FILE

 //
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Chapter 4

Modification of Library

This section will focus on adapting the existing library, to obtain the result for an entire 360 degree
sector from the results obtained by simulating a single sector of a turbomachine.

The current library produces p′(x⃗, t), SPL, frequency and amplitude of the acoustic waves for every
observer. However, this library does not accommodate the simulation of a single sector of an axi-
symmetric model and then subsequently adjusting the results for a full annulus.

Consider Figure 4.1, where the blue surface is a FWH control surface, which bounds the acous-
tic source and lies within the simulated domain, and the grey surface is a copy of the blue surface
obtained by rotating the blue surface by an angle equal to 360◦/ number of blades. Here, let us
assume that there are four blades and therefore the grey surface is obtained by rotating the blue
surface by 90◦. The grey surface is not a part of the generated mesh but instead is just used to
calculate the acoustic pressure wave, by using the results from the simulated FWH control surface,
in this case the blue surface.

In Figure 4.1, the red coloured face on the grey control surface is obtained by rotating the red
coloured face on the blue surface by 90◦. Both the red faces will have the same Li and Ui, as defined
in Eq 2.13 and Eq 2.12. Similarly the green faces will have the same Li and Ui. However, the distance
and orientation of the red or green faces to the observer will be different and therefore will have dif-
ferent contribution to the thickness and loading acoustic pressure wave term, to the observer placed
in the acoustic far-field. Each FWH control surface will be copied and rotated by the number of
sectors required to form a full annulus. As an example, if the turbo-machine contains 4 blades, each
control surface will be copied and rotated 4 times, each time by an angle of 90 degrees. Therefore
to obtain the contribution of the copied sectors, an additional dimension of integration needs to be
added. Apart from integrating over the number of control surfaces and the number of faces constitut-
ing the control surfaces, the p′T and p′L contribution from the copied sectors need to be accounted for.

The position of the copied sector is not identical to the original sector and therefore needs to
be accounted for. This is done by manipulating the face centre values and surface normal vectors
for each of the copied sectors. An additional input indicating the number of sectors to complete the
full annulus now needs to be included in the case dictionary files. In the below code, this is referred
to as Blades, which is member function of the FfowcsWilliamsHawking class. It can be seen in
lines 29 - 31 an additional dimension for the number of blades is now included.

In lines 75 it can be seen that angle by which the control surface is to be rotated by is calcu-
lated simply as the full annulus angle (360◦) divided by the number of blades and incremented in a
step wise manner to the total number of blades. Once the rotation angle is obtained both the face
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Figure 4.1: FWH Surface rotated around z-axis

centre values and the surface normal values are transformed using a rotation matrix as shown in Eq.
4. x, y, z′ are the rotated coordinates about the z-axis and x, y, z are the original coordinates. The
transformed coordinates now represent the face centre and surface normal vectors of the rotated
surface. And therefore the p′T and p′L will reflect the contribution due to the rotated sector. These
transformations are done everywhere face centre values or surface normal vectors are used.


x′

y′

z′

 =


cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1



x
y
z

 (4.1)

These changes are incorporated in the fwhFormulation.C and the Farassa1AFormulation.C

file. It is also important to note that the above mentioned rotation matrix is applicable only for
rotation about the z-axis and therefore the current library works only if the turbo-machine is rotating
about the z-axis. In lines 21-42 it can be seen that in addition to qds and fds being sized to
the number of observers, control surfaces and number of faces per control surface an additional
dimension of number of blades has been included.

fwhFormulationModified



 void Foam::functionObjects::fwhFormulation::initialize()

 {

 //allocate qds_, fds_ and vds_

 qds_.resize(fwh_.observers_.size());

 fds_.resize(fwh_.observers_.size());

 forAll(fwh_.observers_, iObs)

 {

 qds_[iObs].resize(fwh_.Blades_);

 fds_[iObs].resize(fwh_.Blades_);

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 qds_[iObs][iBl].resize(fwh_.controlSurfaces_.size());

 fds_[iObs][iBl].resize(fwh_.controlSurfaces_.size());



 forAll(fwh_.controlSurfaces_, iSurf)

 {
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 qds_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 fds_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 }

 }

 }

The additional dimension of number of blades is similarly added to both robs and magrobs as
seen in lines 64 - 73. In lines 70 - 75 the angle by which the control surface has to be rotated
is calculated according to the number of blades. As an example, if there are 6 blades, for every
iteration of the loop the control surface will be increased by 60 degrees. Once the angle by which
the rotation matrix needs to be adjusted is decided, the rotation matrix is computed according to
Eq. 4 as seen in lines 88 - 92. The new coordinates of the rotated coordinates are now used to
calculate robs/,i.e, the position of the observer as seen in line 94, which is subsequently used to
compute the magnitude of the distance between the observer and source as seen in line 95 - 100.

fwhFormulationModified

 forAll(fwh_.observers_, iObs)

 {

 rMax_[iObs] = 0.0;

 const SoundObserver& obs = fwh_.observers_[iObs];

 robs_[iObs].resize(fwh_.Blades_);

 magrobs_[iObs].resize(fwh_.Blades_);

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 robs_[iObs][iBl].resize(fwh_.controlSurfaces_.size());

 magrobs_[iObs][iBl].resize(fwh_.controlSurfaces_.size());



 const double theta = ((360*iBl)/(fwh_.Blades_))*(constant::mathematical::pi)/180;



 forAll(fwh_.controlSurfaces_, iSurf)

 {

 robs_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 magrobs_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());



 const vectorField& Cf = fwh_.controlSurfaces_[iSurf].Cf();

 vector q_ = vector::zero;

 forAll(Cf, i)

 {

 // Only rotation about z-axis is accounted

 // It will give wrong results for rotation about any other axis

 vector tmpCf = Cf[i];

 q_.x() = (Foam::cos(theta)*tmpCf.x()) + (Foam::sin(theta)*tmpCf.y());

 q_.y() = (Foam::cos(theta)*tmpCf.y()) - (Foam::sin(theta)*tmpCf.x());

 q_.z() = tmpCf.z();



 robs_[iObs][iBl][iSurf][i] = obs.position() - q_;

 vector r = robs_[iObs][iBl][iSurf][i];

 scalar R_ = sqrt

 (

 sqr(r[0])

 +

 ( 1 - sqr(mag(fwh_.U0_)/fwh_.c0_))

 *

In the Farassat1AFormulation.c file, an additional dimension of integration has been added in
a mnner very similar to the fwhFormulation.C file. No changes are required in the other files.

Farassat1AFormulationModified

 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

 void Foam::functionObjects::Farassat1AFormulation::initialize()

 {

 intFdS_.resize(fwh_.observers_.size());

 intDotQdS_.resize(fwh_.observers_.size());

 L_.resize(fwh_.observers_.size());

 M_.resize(fwh_.observers_.size());
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 Un_.resize(fwh_.observers_.size());



 forAll(fwh_.observers_, iObs)

 {

 L_[iObs].resize(fwh_.Blades_);

 M_[iObs].resize(fwh_.Blades_);

 Un_[iObs].resize(fwh_.Blades_);

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 L_[iObs][iBl].resize(fwh_.controlSurfaces_.size());

 M_[iObs][iBl].resize(fwh_.controlSurfaces_.size());

 Un_[iObs][iBl].resize(fwh_.controlSurfaces_.size());



 forAll(fwh_.controlSurfaces_, iSurf)

 {

 L_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 M_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 Un_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 }

 }

 }

 }

Farassat1AFormulationModified

 scalar ct1 = ct+fwh_.obr_.time().deltaT().value()*1.0e-6;//slightly increase time to get inside of

time step



 scalar retv = 0.0;

 intDotQdS_.value(iObs) = 0.0;

 intFdS_.value(iObs) = 0.0;

 //calculate acoustic pressure, zero if source has not yet reached observer

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 forAll(fwh_.controlSurfaces_, iSurf)

 {

 forAll(qds_[iObs][iBl][iSurf], iFace)

 {

 retv = valueAt(qds_, iObs,iBl ,iSurf, iFace, ct1);



 intDotQdS_.value(iObs) += retv;

 retv = valueAt(fds_, iObs, iBl, iSurf, iFace, ct1);

 intFdS_.value(iObs) += retv;

 }

 }

 }



 reduce (intDotQdS_.value(iObs), sumOp<scalar>());

The full Farassat1AFormulationModified.C and fwhFormulationModified.C have been in-
cluded in the 6.1
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Chapter 5

Test Case

This chapter aims to explain the implementation of the modified acoustic library and the setup of a
case using the SRFPimpleFoam Solver. SRFPimpleFoam is a transient incompressible solver which
allows for simulations of rotating domains. The SRF solver rotates the frame of reference to simulate
rotating conditions. No mixing planes are used and only a single rotating domain is simulated.

5.1 CFD Domain

The Mixer tutorial is used as the base case to define the CFD domain and mesh. The tutorial can
be found in the below mentioned location:

cd $FOAM_TUTORIALS/incompressible/SRFSimpleFoam/mixer/

In Figure 5.1,the Blade is the source region and the Inlet, Outlet and OuterWall will be used as
the bounding FWH Surface. The mesh is obtained using the blockMesh utility. The mesh created
is axi-symmetric and uses the cyclic boundary for the periodic faces as shown in Figure 5.2. The
domain rotates about the z axis and the inlet is at the origin at 2500rpm. The extent of the domain
0.1 m in all three directions.

5.2 Case Setup Files

The rotor2D case listed under $FOAM_TUTORIALS\SRFPimpleFoam\rotor2D will be used as the start-
ing point for setting up the boundary conditions. Only significant changes between the case setups
will be listed in this chapter.

SRFSimpleFoam is a steady state solver and the mixer case listed in the tutorials is steady state.
However, we need pressure as a function of time and therefore need a transient case. This is achieved
by increasing the rotational speed of the mixer to 2500 rpm in the SRF properties file in constant/

dictionary. The controlDict, fvSchemes, fvSolutions files have been modified to include the
effects of solving a transient problem. These files can be found in the Chapter 6.1
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Figure 5.1: CFD Domain and Boundaries

Figure 5.2: Mesh
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SRF Properties

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: v2006 |

 | \\ / A nd | Website: www.openfoam.com |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object SRFProperties;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 SRFModel rpm;



 origin (0 0 0);

 axis (0 0 1);



 rpmCoeffs

 {

 rpm 2500;

 }





 // ************************************************************************* //

In the fwhControl dictionary calls for a common settings file. The details will of this file will be
discussed later. In the fwhControl dictionary, the patches declared refer to the fwh control surfaces.
In this case three control surfaces namely, inlet, outlet and the outerWall patches which bound the
mixer blade have been selected as the fwh control surfaces. U0 refers to any background velocity.
It is usually set to zero, other than for cases in which there is a constant velocity near the far field
observer. cleanFreq does not affect the solution in anyway, it just clean out the unnecessary data
every 100 iterations in this case. Blades refers to the number of sectors required to complete the
full annulus. The surfaces sub-dictionary is used to define the aforementioned patches or fwh control
surfaces. Any number of patches can be declared.

fwhControl

 FwhFarassat1A

 {

 type FfowcsWilliamsHawkings;

 #include "commonSettings";

 patches ("inlet" "outlet" "outerWall");

 interpolationScheme cell;

 formulationType Farassat1AFormulation;

 U0 (.0 .0 .0);

 cleanFreq 100;

 Blades 4;

 Ufwh (.0 .0 .0);



 surfaces

 (



 inlet

 {

 type patch;

 patches ("inlet");

 interpolate false;

 }

 outlet

 {
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 type patch;

 patches ("outlet");

 interpolate false;

 }

 outerWall

 {

 type patch;

 patches ("outerWall");

 interpolate false;

 }



 );

 }

The commonSettings file located in the system directory, declares the sampling start time
(timeStart), sampling end time (timeEnd), propagation speed for sound waves (c0), backgorund
velocity at observer (U0), reference dimension (dRef), to be set at -1 for a 3d simulation and the
domain depth for a 2d simulation, density at observer (rho), this should be set to rho for a com-
pressible simulation and to rhoInf for an incompressible simulation. A sub-dictionary including the
position of the observers is then included. The position is mentioned in the cartesian coordinates
along with the reference pressure, which is used to calculate the SPL experience by the observer and
lastly the fourier transform frequency needs to be mentioned

commonSettings

 libs ("libAcoustics.so");



 log true;



 writeFft true;





 timeStart 0;



 timeEnd 1;



 c0 340;



 U0 (0 0 0);



 dRef -1;



 pName p;



 pInf 101325;



 rho rhoInf;



 rhoInf 1.2;



 CofR (0 0 0);



 observers

 {

 Observer-A

 {

 position (0 5 5);

 pRef 2.0e-5;

 fftFreq 1024;

 }



 Observer-B

 {

 position (0 2 3);

 pRef 2.0e-5;

 fftFreq 1024;

 }
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 }

5.3 Running the Simulation

The acoustic library can be compiled and the simulation can be run at once by running the Allrun
script in the run/FWH/ directory using the following command ./Allrun &.

5.4 Output

The results provided in this section account for three observers, namely Observer A, Observer B and
Observer C at locations (0,1,1), (0,2,2) and (0,3,3). Observer A being the closest and Observer C be-
ing the furthest from the source. Once the simulation is complete, an additional folder acousticData
is created within the FWH folder. The acousticData folder contains 4 files can be found. One file
per observer containing the SPL, Frequency and p’ amplitude at the following location:

run/FWH/acousticData/

A small extract of the file for Observer A can be found below. Similar files exist for Observer B and
Observer C. The three columns refer to the SPL, Frequency and p’ amplitude respectively. Figure
5.3 illustrates the SPL in the frequency domain.

The peaks observed in Figure 5.3 refer to the blade passing frequency (BPF). BPF is the increase
in SPL as the blade rotates past the observer. BPF is calculated according to Eq. 5.4. For this case
the BPF is at 170Hz, which is where the first peak is observed. It is also observed that the peaks
observed for Observer A is greater than for Observer B which is in turn greater than Observer C.
This is as expected as Observer A is closest to the source.

BPF = (RPM ∗NumberofBlades/60) (5.1)

fft-FwhFarassat1A-Observer-A.dat

 2431.64 0.154301 77.7468

 2436.52 0.150407 77.5248

 2441.41 0.144386 77.1699

 2446.29 0.137655 76.7552

 2451.17 0.132017 76.392

 2456.05 0.128959 76.1884

 2460.94 0.128892 76.1839

 2465.82 0.13092 76.3195

 2470.7 0.133319 76.4772

 2475.59 0.134384 76.5464

 2480.47 0.133013 76.4573

 2485.35 0.128974 76.1894

 2490.23 0.122944 75.7736

 2495.12 0.116354 75.295

 2500 0.110977 74.8841

 2504.88 0.108234 74.6666

36



5.4. Output Chapter 5. Test Case

Figure 5.3: Sound Pressure Level vs Frequency

Another file containing the pressure as a function time is created at the below mentioned location.

run/FWH/acousticData/$Fwh-Farassat1A-time.dat$

A small extract of these files are provided here. The first column corresponds to the time and the
remaining columns correspond to pressure fluctuation for each observer respectively. Figure 5.4
plots the pressure fluctuation data as a function of time. Again it is observed here that Observer A
experiences higher pressure fluctuations compared to Observer B and Observer C.

Figure 5.4: Pressure fluctuation as a function of time
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Fwh-Farassat1A-time.dat

 0.05 -258.149 -62.6054 -27.5089

 0.0501 -258.15 -62.6052 -27.5087

 0.0502 -258.15 -62.605 -27.5086

 0.0503 -258.151 -62.6049 -27.5085

 0.0504 -258.151 -62.6047 -27.5084

 0.0505 -258.151 -62.6046 -27.5083

 0.0506 -258.152 -62.6045 -27.5082

 0.0507 -258.152 -62.6044 -27.508

 0.0508 -258.152 -62.6043 -27.5079

 0.0509 -258.152 -62.6042 -27.5079

 0.051 -258.152 -62.6041 -27.5079

 0.0511 -258.152 -62.6041 -27.5078

 0.0512 -258.152 -62.6042 -27.5077

 0.0513 -258.152 -62.6042 -27.5075

 0.0514 -258.152 -62.6042 -27.5074

 0.0515 -258.152 -62.6043 -27.5073
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Study questions

1. How do you adjust the library to accommodate a compressible solution ?

2. How do you adjust the library to accommodate 2d simulations ?

3. How do you adjust the library to accommodate background velocity at the observer ?

4. Which terms are ignored whilst computing the Farassat 1A formulation ?

5. What is the difference between direct and hybrid CAA approaches ?
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Chapter 6

The first appendix

6.1 First Section

6.1.1 fwhFormulationModified.C

fwhFormulationModified

 #include "FfowcsWilliamsHawkings.H"

 #include "fwhFormulation.H"



 Foam::functionObjects::fwhFormulation::fwhFormulation(const FfowcsWilliamsHawkings& fwh)

 :

 fwh_(fwh),

 fwhProbeI_(0),

 qds_(0),

 fds_(0),

 tobs_(0),

 robs_(0),

 magrobs_(0),

 ni_(0),

 nl_(0),

 rMax_(0),

 tauMax_(0),

 tauMin_(0)

 {

 this->initialize();

 }



 void Foam::functionObjects::fwhFormulation::initialize()

 {

 //allocate qds_, fds_ and vds_

 qds_.resize(fwh_.observers_.size());

 fds_.resize(fwh_.observers_.size());

 forAll(fwh_.observers_, iObs)

 {

 qds_[iObs].resize(fwh_.Blades_);

 fds_[iObs].resize(fwh_.Blades_);

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 qds_[iObs][iBl].resize(fwh_.controlSurfaces_.size());

 fds_[iObs][iBl].resize(fwh_.controlSurfaces_.size());



 forAll(fwh_.controlSurfaces_, iSurf)

 {

 qds_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 fds_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 }

 }

 }
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 //allocate tobs

 tobs_.resize(fwh_.observers_.size());

 forAll(fwh_.observers_, iObs)

 {

 tobs_[iObs].resize(fwh_.Blades_);

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 tobs_[iObs][iBl].resize(fwh_.controlSurfaces_.size());

 forAll(fwh_.controlSurfaces_, iSurf)

 {

 tobs_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 }

 }

 }

 tauMax_.resize(fwh_.observers_.size(), 0.0);

 rMax_.resize(fwh_.observers_.size(), 0.0);



 //allocate robs

 robs_.resize(fwh_.observers_.size());

 magrobs_.resize(fwh_.observers_.size());



 forAll(fwh_.observers_, iObs)

 {

 rMax_[iObs] = 0.0;

 const SoundObserver& obs = fwh_.observers_[iObs];

 robs_[iObs].resize(fwh_.Blades_);

 magrobs_[iObs].resize(fwh_.Blades_);

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 robs_[iObs][iBl].resize(fwh_.controlSurfaces_.size());

 magrobs_[iObs][iBl].resize(fwh_.controlSurfaces_.size());



 const double theta = ((360*iBl)/(fwh_.Blades_))*(constant::mathematical::pi)/180;



 forAll(fwh_.controlSurfaces_, iSurf)

 {

 robs_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());

 magrobs_[iObs][iBl][iSurf].resize(fwh_.controlSurfaces_[iSurf].Cf().size());



 const vectorField& Cf = fwh_.controlSurfaces_[iSurf].Cf();

 vector q_ = vector::zero;

 forAll(Cf, i)

 {

 // Only rotation about z-axis is accounted

 // It will give wrong results for rotation about any other axis

 vector tmpCf = Cf[i];

 q_.x() = (Foam::cos(theta)*tmpCf.x()) + (Foam::sin(theta)*tmpCf.y());

 q_.y() = (Foam::cos(theta)*tmpCf.y()) - (Foam::sin(theta)*tmpCf.x());

 q_.z() = tmpCf.z();



 robs_[iObs][iBl][iSurf][i] = obs.position() - q_;

 vector r = robs_[iObs][iBl][iSurf][i];

 scalar R_ = sqrt

 (

 sqr(r[0])

 +

 ( 1 - sqr(mag(fwh_.U0_)/fwh_.c0_))

 *

 ( sqr(r[1]) + sqr(r[2]) )

 );



 magrobs_[iObs][iBl][iSurf][i] =

 (

 -(mag(fwh_.U0_)/fwh_.c0_) * r[0] + R_

 ) / (1 - sqr(mag(fwh_.U0_)/fwh_.c0_));





 if (magrobs_[iObs][iBl][iSurf][i] > rMax_[iObs])
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 {

 rMax_[iObs] = magrobs_[iObs][iBl][iSurf][i];

 }

 }

 }

 }



 reduce(rMax_[iObs], maxOp<scalar>());

 tauMax_[iObs] = rMax_[iObs] / fwh_.c0_;

 }

 //calculate normals

 List<vector> Cs(fwh_.controlSurfaces_.size());

 ni_.resize(fwh_.Blades_);

 nl_.resize(fwh_.Blades_);

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 const double theta = ((360*iBl)/(fwh_.Blades_))*(constant::mathematical::pi)/180;

 ni_[iBl].resize(fwh_.controlSurfaces_.size());

 nl_[iBl].resize(fwh_.controlSurfaces_.size());



 forAll(fwh_.controlSurfaces_, iSurf)

 {

 const vectorField& Sf = fwh_.controlSurfaces_[iSurf].Sf();

 const vectorField& Cf = fwh_.controlSurfaces_[iSurf].Cf();

 ni_[iBl][iSurf].resize(Cf.size());

 nl_[iBl][iSurf].resize(Cf.size());



 Cs[iSurf] = gSum(Cf);

 scalar surfSize = scalar(Cf.size());

 reduce (surfSize, sumOp<scalar>());

 Cs[iSurf] /= surfSize;



 scalar magSf = 0.0;

 vector q_ = vector::zero;

 forAll(Cf, iFace)

 {

 vector tmpSf = Sf[iFace];

 q_.x() = (Foam::cos(theta)*tmpSf.x()) + (Foam::sin(theta)*tmpSf.y());

 q_.y() = (Foam::cos(theta)*tmpSf.y()) - (Foam::sin(theta)*tmpSf.x());

 q_.z() = tmpSf.z();



 magSf = mag(q_);

 ni_[iBl][iSurf].value(iFace) = q_/magSf;

 if ( ((Cf[iFace] - Cs[iSurf]) & ni_[iBl][iSurf].value(iFace)) > 0 )

 {

 nl_[iBl][iSurf][iFace] = 1.0;

 }

 else

 {

 nl_[iBl][iSurf][iFace] = -1.0;

 }

 ni_[iBl][iSurf].value(iFace) *= nl_[iBl][iSurf][iFace];

 }

 }

 }

 }



 Foam::functionObjects::fwhFormulation::~fwhFormulation()

 {

 }



 Foam::scalar Foam::functionObjects::fwhFormulation::observerAcousticPressure(label iObs)

 {

 return 0.0;

 }



 void Foam::functionObjects::fwhFormulation::clearExpiredData()

 {
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 scalar ct = fwh_.obr_.time().value();// - fwh_.obr_.time().deltaT().value()*1.0e-6;

 reduce(ct, minOp<scalar>());



 fwhProbeI_++;

 if ( mag(fwhProbeI_ % fwh_.cleanFreq_) > VSMALL )

 {



 }

 else

 {

 fwhProbeI_ = 0;

 scalar expiredTime = 0.0;

 label expiredIndex= -1;

 label newsize = 0;

 forAll(qds_, iObs)

 {

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 forAll(qds_[iObs][iBl], iSurf)

 {

 forAll(qds_[iObs][iBl][iSurf], iFace)

 {

 if (tauMin_.size())

 {

 expiredTime = ct - (tauMax_[iObs] - tauMin_[iObs]);

 }

 else

 {

 expiredTime = ct - tauMax_[iObs];

 }

 const pointTimeData& qdsOldPointData = qds_[iObs][iBl][iSurf][iFace];

 expiredIndex= findExpiredIndex(qdsOldPointData, expiredTime);



 // -1 - if nothing found, from 0 to (size-1) for indices to remove

 if (expiredIndex > -1)

 {

 newsize = qdsOldPointData.first().size() - (expiredIndex + 1);



 //clean qds

 pointTimeData newPointData;



 newPointData.first().resize(newsize);

 newPointData.second().resize(newsize);

 for(label iTime=expiredIndex+1; iTime<qdsOldPointData.first().size(); iTime++)

 {

 newPointData.first() [iTime-(expiredIndex+1)] = qdsOldPointData.first()[iTime];

 newPointData.second()[iTime-(expiredIndex+1)] = qdsOldPointData.second()[iTime];

 }

 qds_[iObs][iBl][iSurf][iFace].first().operator=(newPointData.first());

 qds_[iObs][iBl][iSurf][iFace].second().operator=(newPointData.second());



 //clean fds

 const pointTimeData& fdsOldPointData = fds_[iObs][iBl][iSurf][iFace];

 for(label iTime=expiredIndex+1; iTime<fdsOldPointData.first().size(); iTime++)

 {

 newPointData.first()[iTime-(expiredIndex+1)] = fdsOldPointData.first()[iTime];

 newPointData.second()[iTime-(expiredIndex+1)] = fdsOldPointData.second()[iTime];

 }



 fds_[iObs][iBl][iSurf][iFace].first().operator=(newPointData.first());

 fds_[iObs][iBl][iSurf][iFace].second().operator=(newPointData.second());

 }

 }

 }

 }

 }

 }

 }
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 void Foam::functionObjects::fwhFormulation::update()

 {

 scalar ct = fwh_.obr_.time().value();



 if (mag(fwh_.Ufwh_) > SMALL )

 {

 forAll(fwh_.observers_, iObs)

 {

 rMax_[iObs] = 0.0;

 tauMax_[iObs] = 0.0;

 if (rMin_.size())

 {

 rMin_[iObs] = GREAT;

 }

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {

 const double theta = ((360*iBl)/(fwh_.Blades_))*(constant::mathematical::pi)/180;

 forAll(fwh_.controlSurfaces_, iSurf)

 {

 const vectorField& Cf = fwh_.controlSurfaces_[iSurf].Cf();

 vector q_ = vector::zero;

 forAll(Cf, i)

 {

 vector tmpCf = Cf[i];

 q_.x() = (Foam::cos(theta)*tmpCf.x()) + (Foam::sin(theta)*tmpCf.y());

 q_.y() = (Foam::cos(theta)*tmpCf.y()) - (Foam::sin(theta)*tmpCf.x());

 q_.z() = tmpCf.z();



 robs_[iObs][iBl][iSurf][i] = fwh_.observers_[iObs].position() - q_;

 magrobs_[iObs][iBl][iSurf][i] = mag(robs_[iObs][iBl][iSurf][i]);

 if (magrobs_[iObs][iBl][iSurf][i] > rMax_[iObs])

 {

 rMax_[iObs] = magrobs_[iObs][iBl][iSurf][i];

 }



 if (rMin_.size() && (magrobs_[iObs][iBl][iSurf][i] < rMin_[iObs]))

 {

 rMin_[iObs] = magrobs_[iObs][iBl][iSurf][i];

 }

 }

 }

 }

 reduce(rMax_[iObs], maxOp<scalar>());

 tauMax_[iObs] = rMax_[iObs] / fwh_.c0_;



 if (tauMin_.size())

 {

 reduce(rMin_[iObs], minOp<scalar>());

 tauMin_[iObs] = rMin_[iObs] / fwh_.c0_;

 }

 }

 for(int iBl = 0; iBl<fwh_.Blades_; ++iBl)

 {
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6.1.2 controlDict

controlDict

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: v2006 |

 | \\ / A nd | Website: www.openfoam.com |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 application SRFPimpleFoam;



 startFrom startTime;



 startTime 0;



 stopAt endTime;



 endTime 0.3;



 deltaT 1e-04;



 writeControl timeStep;



 writeInterval 100;



 purgeWrite 0;



 writeFormat ascii;



 writePrecision 6;



 writeCompression off;



 timeFormat general;



 timePrecision 6;



 runTimeModifiable true;



 adjustTimeStep no;



 maxCo 1;



 functions

 {

 #include "fwhControl"

 }

 // ************************************************************************* //
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6.1.3 fvSchemes

fvSchemes

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: v2006 |

 | \\ / A nd | Website: www.openfoam.com |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 ddtSchemes

 {

 default Euler;

 }



 gradSchemes

 {

 default Gauss linear;

 limited cellLimited Gauss linear 1;

 }



 divSchemes

 {

 default none;

 div(phi,Urel) Gauss limitedLinearV 1;

 div(phi,k) Gauss limitedLinear 1;

 div(phi,epsilon) Gauss limitedLinear 1;

 div((nuEff*dev2(T(grad(Urel))))) Gauss linear;

 }



 laplacianSchemes

 {

 default Gauss linear corrected;

 }



 interpolationSchemes

 {

 default linear;

 }



 snGradSchemes

 {

 default corrected;

 }



 wallDist

 {

 method meshWave;

 }





 // ************************************************************************* //

47



6.1. First Section Chapter 6. The first appendix

6.1.4 fvSolution

fvSolution

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: v2006 |

 | \\ / A nd | Website: www.openfoam.com |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 solvers

 {

 p

 {

 solver GAMG;

 tolerance 1e-08;

 relTol 0.05;

 smoother GaussSeidel;

 nCellsInCoarsestLevel 20;

 }



 pFinal

 {

 $p;
 relTol 0;

 }



 "Urel.*"

 {

 solver smoothSolver;

 smoother GaussSeidel;

 nSweeps 2;

 tolerance 1e-07;

 relTol 0.1;

 }



 "k.*"

 {

 solver smoothSolver;

 smoother GaussSeidel;

 nSweeps 2;

 tolerance 1e-07;

 relTol 0.1;

 }



 "epsilon.*"

 {

 solver smoothSolver;

 smoother GaussSeidel;

 nSweeps 2;

 tolerance 1e-07;

 relTol 0.1;

 }

 }



 PIMPLE

 {
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 nOuterCorrectors 1;

 nCorrectors 2;

 nNonOrthogonalCorrectors 0;

 pRefCell 0;

 pRefValue 0;

 }



 relaxationFactors

 {

 equations

 {

 "Urel.*" 1;

 "k.*" 1;

 "epsilon.*" 1;

 }

 }



 // ************************************************************************* //
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